Amyloid fibrils nucleated and organized by DNA origami constructions
نویسندگان
چکیده
Amyloid fibrils are ordered, insoluble protein aggregates that are associated with neurodegenerative conditions such as Alzheimer's disease. The fibrils have a common rod-like core structure, formed from an elongated stack of β-strands, and have a rigidity similar to that of silk (Young's modulus of 0.2-14 GPa). They also exhibit high thermal and chemical stability and can be assembled in vitro from short synthetic non-disease-related peptides. As a result, they are of significant interest in the development of self-assembled materials for bionanotechnology applications. Synthetic DNA molecules have previously been used to form intricate structures and organize other materials such as metal nanoparticles and could in principle be used to nucleate and organize amyloid fibrils. Here, we show that DNA origami nanotubes can sheathe amyloid fibrils formed within them. The fibrils are built by modifying the synthetic peptide fragment corresponding to residues 105-115 of the amyloidogenic protein transthyretin and a DNA origami construct is used to form 20-helix DNA nanotubes with sufficient space for the fibrils inside. Once formed, the fibril-filled nanotubes can be organized onto predefined two-dimensional platforms via DNA-DNA hybridization interactions.
منابع مشابه
Amyloid-β Forms Fibrils by Nucleated Conformational Conversion of Oligomers
Amyloid-β amyloidogenesis is reported to occur via a nucleated polymerization mechanism. If this is true, the energetically unfavorable oligomeric nucleus should be very hard to detect. However, many laboratories have detected early nonfibrillar amyloid-β oligomers without observing amyloid fibrils, suggesting that a mechanistic revision may be needed. Here we introduce Cys-Cys-amyloid-β(1-40),...
متن کاملAnti-amyloidogenic and disaggregating effects of Salvia officinalis in vitro: a strategy to reduce the insulin amyloid fibrils due to repeated subcutaneous injections in diabetic patients
Background: Recently, there has been growing efforts to elucidate the molecular mechanism of amyloid formation and investigating effective compounds for inhibiting of amyloid structures. Investigation of the fibrillation process through its induction and inhibition using specific compounds such as aromatic derivatives provide useful information for stabilizing the protein structure. In the pres...
متن کاملInhibition of Amyloid Fibrils Formation from Hen Egg White Lysozyme by Satureia Hortensis Extract and its Effect on Learning and Spatial Memory of Rats
Background & Aims: Alzheimer's disease is a neurodegenerative disorder characterized by the abnormal aggregation of amyloid-β plaques in the brain. Although several studies have been done for finding effective medicines in the treatment of this disease, a drug that inhibits amyloid β aggregation and ameliorates the disorder has not been approved so far. One important therapeutic approach is use...
متن کاملAqueous, Unfolded OmpA Forms Amyloid-Like Fibrils upon Self-Association
Unfolded outer membrane beta-barrel proteins have been shown to self-associate in the absence of lipid bilayers. We previously investigated the formation of high molecular weight species by OmpA, with both the transmembrane domain alone and the full-length protein, and discovered that the oligomeric form contains non-native β-sheet structure. We have further probed the conformation of self-asso...
متن کاملSelf-organization of Short Peptide Fragments: From Amyloid Fibrils to Nanoscale Supramolecular Assemblies
Numerous supramolecular protein assemblies had been demonstrated to have either physiological or pathological activities. The most significant case of diseaseassociated self-organized structures is that of amyloid fibrils. The formation of these fibrils is the hallmark of major human disorders, including Alzheimer’s disease and type II diabetes. In this review we illustrate the molecular proper...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 9 شماره
صفحات -
تاریخ انتشار 2014